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The p rob l em  of the propagat ion  of an e x o t h e r m i c - r e a c t i o n  front  in a condensed med ium has 
been examined in a number  of r epo r t s  [1-8], in which var ious  s ta tements  of the p rob l em have 
been analyzed, the conditions of exis tence  and uniqueness  of a solution determined,  and d i f fe r -  
ent approx imate  methods of de termining the propagat ion  veloci ty  of the front  suggested.  In 
[1-6] the examinat ion  was conducted for  a speci f ic  c l a s s  of h e a t - r e l e a s e  functions co r r e spond-  
ing to the kinet ics  of exo the rmic  t r ans fo rma t ion  in homogeneous condensed sy s t ems .  The  
propagat ion  of the reac t ion  f ront  in he terogeneous  sy t ems  (condensed mixtures)  was studied 
in [7, 8] fo r  pa r t i cu l a r  f o r m s  of the h e a t - r e l e a s e  function cor responding  to ce r ta in  s impl i fy -  
ing assumpt ions  concerning the s t r u c t u r e  of the he terogeneous  medium.  In connection with 
the complexi ty  of the s t r u c t u r e s  of rea l  condensed s y s t e m s  [9-11] and the d ive r s i ty  of the 
kinet ic  laws of interaction,  in the p r e sen t  r epo r t  the avai lable  r e su l t s  on a b r o a d e r  c lass  of 
h e a t - r e l e a s e  functions a r e  genera l ized,  and ' the poss ib le  approx imate  methods of de termining  
the propagat ion  veloci ty  a r e  analyzed.  

1.  S t a t e m e n t  o f  P r o b l e m  

The s ta t ionary  propagat ion  of an e x o t h e r m i c - r e a c t i o n  f ront  in condensed s y s t e m s  which a r e  homoge-  
neous i n a t h e r r n a l  r e s pec t  is examined,  i.e., it is a s sumed  that the t e m p e r a t u r e  dis t r ibut ion is one-d imen-  
sional  in the d i rec t ion along the propaga t ion  of the front .  Such a s i tuat ion occurs  not only fo r  s y s t e m s  which 
a r e  homogeneous in a chemica l  r e s p e c t  (or a r e  homogenized in thewarm-upzone) ,  where  the heat r e l e a s e  
has a vo lumet r i c  nature ,  but also for  the case,  important  in a p rac t i ca l  respec t ,  of condensed m i x t u r e s  which 
in te rac t  he terogeneously .  As shown ha [12], condensed m i x t u r e s  can be considered as homogeneous in a 
t h e r m a l  r e spec t  independently of the deg ree  of d i spe r s ion  of the pa r t i c l e s ,  s ince the heat r e l e a s e  in such 
mix tu re s  (determined by the in termixing of the components) takes p lace  much m o r e  slowly than the p r o c e s s  
of t h e r m a l  re laxa t ion  in the pa r t i c l e s .  The chemica l  he terogenei ty  inherent  Go such s y s t e m s  is mani fes ted  
in the pa r t i cu l a r  f o r m  of the kinet ic  function cha rac te r i z ing  the heat  r e l e a s e  in an effect ively  homogeneous 
medium.  Below we will use  the concept of the effect ive  reac t ion  ra te  which de t e rmines  the r a t e  of t r a n s f o r -  
mat ion  of the components  per  unit vo lume of the homogeneous medium under  considerat ion.  

A s ta t ionary  mode of p ropaga t ion  of a reac t ion  f ront  in a condensed med ium a s s u m e s  the p r e s e n c e  of 
a sample ,  infinite in both di rec t ions ,  at one end of which (x= - ~ )  is given the initial s ta te  of the subs tance  
(the t e m p e r a t u r e  and composition),  while the final s t a te  is de te rmined  by the thermodynamic  conditions of 
equi l ibr ium. F o r  a one - s t age  t r ans fo rma t ion  A - - B ,  where  A and B a r e  the se t  of initial subs tances  and re-- 
act ion products ,  r espec t ive ly ,  the propagat ion  of the f ron t  is desc r ibed  by two dif ferent ia l  equations: an 
equation fo r  the propagat ion  of heat  and an equation f o r  the r a t e  of heat  r e l ea se .  In a coordinate  s y s t e m  
moving along with the f ront  with a ve loc i ty  u these  equations have the f o r m  

N ~-~a .(~'up~I-I~ _ x -~-~/dr ~ = 0 (1.1)  
1 

T 

U~'~-~ x = w(n, = H, (r_) + f (1.2)-- 
T- 
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A[OyJ P O W . T 9  E 

~ The equation of heat conduction (1.1) is wri t ten in the f o r m  of the 
/Q conservat ion of the total  enthalpy flux. In (1.1) and (1.2) U = ( p _ l _ p l ) /  

p_l  is the depth of t r ans fo rmat ion  (0< U < 7/+), w is the reac t ion  ra te ,  x 
is the coordinate along the di rect ion of propagation,  pi is the amount of 
the i - th  component p e r  unit volume of the medium, pl is the amount of 
one of the initial components,  Hi(T ) is the enthalpy of a unit m a s s  of the 
i - th component at the t e m p e r a t u r e  T, ci(T) is the specif ic  heat capaci ty 
of the i - th component, N is the number  of components,  the indices minus 

7" 
and plus cor respond  to the conditions at the "cold" (x=--~)  and "hot" 
(x= ~) ends, respec t ive ly .  The  t he rma l  conductivity coefficient  X, gen-  Fig. i 
e ra l ly  speaking, can va ry  along with the t e m p e r a t u r e  and composi t ion 
of the medium: K = K 0/, T). 

~ ' ~ / r z /  With allowance fo r  the s to ich iomet r ic  re la t ionships  between the 
~ 5 ~  react ing components the values  pi can be e x p r e s s e d  through the depth 

/ / /  ! RP i / dP 1 = ~i, PlY]in : ~){ - -  pl, i = t ,  2, /~ (1.3) 

�9 ' " ~  Y Y t P  where  " i  a r e  the s t~176  c~ ~ the react i~ 

-10 -5 0 The integrat ion of (1.1) in the l imi ts  f r o m - : ~  to x gives 
N 

Fig. 2 ~,dr ] dx = up [c (T)(r - -  T )  - -  Q (r)~l], p = ~ pi (1.4) 
1 

N T 
' Y'I c (T) = T - -  I '  cidT 

1 r_ ( 1 . 5 )  

p2 p~ N ~" 
Q (T) = ~ ~ viH ~ (r) = Q ( r )  q- ~ ~.j'~, ,) c~dT (1.6) 

1 T -  

Here  c(T) is the mean  heat  capaci ty of the medium,  and Q(T) is the calor i f ic  effec~ of the reac t ion  pe r  

Od 

unit m a s s  of the substance.  

F o r  a s t rongly  exothermic  react ion  the las t  t e r m  in (1.6), as a rule, has the nature  of a co r rec t ion  
and ref lec ts  the dependence of the ca lor i f ic  effect  on the t empera tu re ,  connected with the d i f ference  in heat 
capaci t ies  of the initial subs tances  and the reac t ion  products  (the Kirchhoff  effect}. The t e m p e r a t u r e  T+ 
a f te r  the complet ion of the reac t ion  is de te rmined  f r o m  (1.4}: 

x = ,~, d r  / dx = 0, n = n+, r+ = T_ q- Q (T+)n§ / c(r+) (1.7) 

The dependence Q (T)c -1 (T} is henceforth a s sumed  to be  such that in accordance  with the p h y s i c a l m e a n -  
ing the combust ion t e m p e r a t u r e  is a monotonical ly increasing continuous function of the f inal  depth of t r an s -  
fo rmat ion  7+. 

Equations (1o2) and (1.4} together  with the boundary conditions at x = + ~  complete ly  de te rmine  the p rop-  
agation of an e x o t h e r m i c - r e a c t i o n  f ront  in a condensed medium.  F o r  fu r the r  considera t ion it is convenient 
to r e p r e s e n t  the p rob lem on the propagat ion  of the front  in the fo rm 

dn ~ (~, T) ~w (1.8) 
---~ u s [ (T - -  r _ )  - -  Q (T) c -1 (T)  ~l] ' q) (1], T )  = c---~" 

~l = 0 ,  T = T ; ~ I  =q+ ,  T =  T+ (1.9) 

In genera l ,  Eq. (1.8) does not have an analyt ical  solution and the re fo re  it is often n e c e s s a r y  to r e s o r t  
to a numer ica l  calculation to solve the p rob l em (1.8), (1.9). He re  the question of the exis tence  and unique- 
ne s s  of a solution acquires  fundamental  significance.  

2. E x i s t e n c e  a n d  U n i q u e n e s s  o f  S t a t i o n a r y  M o d e  o f  P r o p a g a t i o n  

o f  a n  E x o t h e r m i c - R e a c t i o n  F r o n t  in a C o n d e n s e d  M e d i u m  

The question of the exis tence  and uniqueness of a s ta t ionary  mode of propagat ion of an exo the rmic -  
reac t ion  f ront  in the condensed phase  was examined in [1, 2, 5] on the assumpt ion  that the react ion r a t e  can 
be  r ep re sen ted  in the f o r m  
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w (~l, T) -- (i --  ~l)~k (T) (2.1) 

The theorem of the existence and uniqueness of a solution was proven in [1, 2] for  the cases n= 0, 1 
and in [5] for an a rb i t r a ry  value of n. Equation (2.1) corresponds  to the kinetics of an exothelmic t rans for -  
mation in homogeneous condensed sys tems.  The proof of the existence and uniqueness of the s ta t ionary prop- 
agation of a react ion front was conducted in [8] for  heterogeneous sys tems  when the hea t - re l ease  function 
is not reduced to zero  at the moment of completion of the reacLion 

w(~l, T ) > 0 ,  0 < ~ 1 <  ~1+; W(~l, T ) =  0, ~1 > ~1+ (2.2) 

which corresponds to certain simplifying assumptions concerning the s t ruc ture  of the heterogeneous sys -  
tem. In many cases  a m o r e  complex kinetics, not corresponding to (2.1) and (2.2), occurs  for  react ions in 
the condensed phase. In connectior/with this let us examine the question of existence and uniqueness for 
m o r e  general  assumptions concerning the chemical  reaction rate.  

We will a ssume that the function (P0?, T) in (1.8) is bounded above and is positive everywhere  except 
for  some interval in the vicinity of the initial temperature ,  where it is identically reduced to zero:  

(p----0; T < T < T ~ ~1=0  (2.3) 

M >  ( p > 0 ;  T ~  T <  T+, 0 <  ~1< ~1+, q) (q+, T+) = 0 (2.4) 

where T ~ is the tempera ture  at the s ta r t  of the react ion (T_ < T~ T+). As is known [13], the condition (2.3) 
is neces sa ry  for  the existence of a s tat ionary mode of propagation of an exothermie-reac t ion  front. In addi- 
tion to (2.3) and (2.4), we will assume that the proper t ies  of the function r (7, T) are  such that the differential 
equation (1.8) has a unique solution at all inte .rnal points of the region 0 < ~ < 7+, T_ �9 T < T+. 

An important fact for the analysis  is that the function 9(7 ,  T) is reduced to ze ro  at the moment of com- 
pletion of the react ion (~/=77+, T=T+) .  In this case, as seen f rom (1.7) and (1.8), the point 7+, T+ is a singu- 
lar  point of the differential equation, with the type of singulari ty and the behavior of the integral  curves  in 
the vicinity of this point being determined by the proper t ies  of the function r T). We can show that if 
q~(~, T) has the proper t ies  (2.3), (2.4),then one can always find a value ofthe pa rame te r  u at which the inte- 
g ra l  curve (1.8) sat isf ies the boundary conditions (1.9). 

The existence of a s tat ionary mode of propagation of an exothermic- reac t ion  front in the condensed 
phase will be proven on this basis .  It should be noted that in the case  under  considerat ion one cannot use 
the method of proof of existence and uniqueness used in [1-3, 5] in which the form of the function r (7, T) 
was assumed to be known, which permit ted a direct  determinat ion of the nature of the singular point (7+, 
T+) and the behavior of the integral curves in its vicinity. 

In the case of an a rb i t r a ry  function r (7, T) the principal  aspect of the proof  is the question of the ex- 
istence of integral curves passing through the point (7/+, T+). 

Let us consider  an increasing sequence of values ~/+i and the values T+ i corresponding to them [from 
(1.7) 1: 

~+~ < ~]+~+I < ~l+, T ~ < T+ ~ < T+ ~+I < T+ 

An analysis of (1.8) shows [8] that there is a unique value of the pa ramete r  u i at which the integral  curve 
emerging f rom the point G passes  through the chosen point B(~+ i, T+ 1) (Fig. 1), with the value of the pa r am-  
eter  u i increasing together with ~+i 

~1+ ~+l>~l+ i, u i+i>u~ 

Values of u> u 1 = 4~----0~ , where b is the slope of some straight line PQ intersect ing a segment AG and 
lying below the line AD and .M 0 is the grea tes t  value of the function q~ / [T- -T_-Q~c  -1] on the segment PQ, do 
not belong to the sequence u 1, since d~//dT �9 b 0 holds for  these values of the pa rame te r  u, i.e., the integral 
curves  pass  below the straight line PQ. Consequently, with the approach of ~?+i to ~?+ the increasing se-  
quence of ~?+i corresponds  to an increasing sequence of values u i bounded above and having the limit 

u- = lira u i, ~1+ i --)- ~1+ 

It is not hard to show the existence of a l imit for the decreasing sequence {uJ}, corresponding to the 
integral  curve AEI, pass ing through the point E 1 (v/ J, T . )  of the segment DE (any of the ui can be taken as 

4 -  �9 -t- 

the value of u bounding the decreasing sequence { uJ]- f rom below): 

a + = lim u J, ~f --~ ~1+, ~1J+l > ~1 ~" 
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TABLE i 

R T + / B  

0.05 
0.10 
0.t0 
0.i5 
0.05 
0.10 
0.t0 
0.t5 
0.15 
0.05 
0.10 
0.t5 
0.05 
0.t0 
0.15 

20 
t0 
40 
t5 

s 

l 0  - -  
2 0  - -  
i 0  - -  

4 -- 

- -  5 
- -  2 
- -  2 
- -  2 

"ue[u ~ 

t .26 
t.4 
t .14 
1.2t 
t .07 
1 . 0 2  
i .04 
1 . 0 2  
1.31 
1 . 5 3  
1.5 
1.47 
2.3 
2 
2 

u§ ~ 

1 . 0 8  
1.16 
t.0 
t .01 
1.0 
0.94 
0.97 
0.9 
i .23 
1 .t0 
t .03 
1.02 
1.22 
i .06 
1.04 

B e c a u s e  of the mono ton ic  d e p e n d e n c e  of the  s o l u t i o n  of (1.8) on 
the  p a r a m e t e r  we  have  

a t < u - ~ u  + < u  J, u ~§ tt ~+~<t t  j 

T h e  i n t e g r a l  c u r v e s  7 (T, u - )  and 7 (T,  u+) cannot  i n t e r s e c t  
e i t h e r  the  c u r v e  AD o r  the  s e g m e n t  DE ( i n t e r s e c t i o n  wi th  AD c o r r e -  
sponds  to  the  v a l u e  u i and i n t e r s e c t i o n  wi th  DE c o r r e s p o n d s  to u J), 
conse que n t l y ,  t h e y  p a s s  t h r o u g h  the  po in t  D, i .e . ,  t h e y  a r e  the  s o l u -  
t i ons  of  the  p r o b l e m  (1.8), (1.9). When the  v a l u e s  u -  and u + c o i n c i d e  
t he  poin t  D has  a s i n g u l a r i t y  of the  s a d d l e  type .  In th i s  c a s e  t h e r e  i s  
a un ique  c u r v e  c o r r e s p o n d i n g  to  the  v a l u e  u=  u - = u  + p a s s i n g  t h rough  
the  po in t s  A and D. In the  g e n e r a l  c a s e  [the f o r m  of ~ (7, T) is  a r b i -  
t r a r y ]  the  i ne qua l i t y  u - - < u  + i s  s a t i s f i e d  b e t w e e n  u -  and u +. I t  can  be  
shown tha t  i f  u -  and  u + a r e  such  that  u -  ( u  +, t hen  f o r  any  i n t e r v a l  of 
v a l u e s  u -  < u < u + the  i n t e g r a l  c u r v e  e m e r g i n g  f r o m  the  po in t  A p a s s e s  
th rough  t h e  po in t  D, i . e . ,  is  a l s o  a s o l u t i o n  of the  p r o b l e m  (1.8), (1.9). 

In the l a t t e r  case  f r o m  the set  of values u - <  u < u + corresponding to the solution of the p rob lem (1.8), 
(1.9) one mus t  se lec t  as the ve loc i ty  of s ta t ionary  propaga t ion  of the f ront  the value u = u -  which is the l imit  
of the u i cor responding  to solutions of the p rob lem {1.8), (1.9) when 7 +i < 7+ (T+ i< T+), s ince  it is c l ea r  
f r o m  phys ica l  cons idera t ions  that the s ta t ionary  propagat ion  veloci ty  of the reac t ion  front  mus t  va ry  continu- 
ously with a dec r ea s e  in the p a r a m e t e r  7+. We note h e r e  that the mode of s t a t ionary  propagat ion of the r e -  
action front  is an asympto t ic  r ep resen ta t ion  (as t--*~o) of the r ea l  nonsta t ionary  propagation.  

In a number  of cases ,  f o r  example,  when~p (7, T)= (1--7)nk(T), n -  > 1, the values  7 =7+ and T=  T+ a re  
not reached in any finite t ime t, i .e. ,  the actual  propagat ion of the react ion  f ront  takes place  with 7 < 7+ and 
T <  T+. 

3.  A p p r o x i m a t e  D e t e r m i n a t i o n  of  V e l o c i t y  o f  S t a t i o n a r y  

P r o p a g a t i o n  o f  a C o m b u s t i o n  F r o n t  

The speci f ic  p rope r t i e s  of the function ga (7, T) a r e  usual ly  used in the construct ion of approx imate  
solutions.  One o f t h e s e p r o p e r t i e s  is the s t rong t e m p e r a t u r e  dependence 

q) (~l, T) = ~. (~l, T) w 0], T) / c (T)p = a (~l, T) ko] (~)e -1~'/RT 

Here  a = A / c  p is  coefficient  of t he rma l  diffusivity of the medium, k 0 is the preexponent ,  E is the ac t i -  
vat ion energy,  R is the un ive r sa l  constant,  and the function f (7) c h a r a c t e r i z e s  the dependence of the r e a c -  
tion r a t e  on the depth of t r ans format ion .  

At high act ivat ion energ ies  (E/RT>> 1) the react ion  ra t e  fal ls  off rapidly  wi th t empera tu re ,  which makes  
it poss ib le  to use  the approximat ion  of a nar row reac t ion  zone [14] in the calculat ion of the combust ion ve -  
locity. 

By considering (1.8) in a na r row t e m p e r a t u r e  in te rva l  of the reac t ion  zone, where  one can neglect  all  
the t e m p e r a t u r e  dependences which a r e  weakly exponential,  one can obtain for  the square  of the velocity 

u2 = k~ko / UT+a (~l+, T+) (ttT+~c (T+) / O (T+)) (3.1) 

LSF(' (t-u)a (~§ T§ k~ 
-----I (~l) a (~l, 1'+) 

0 

The approximat ion  of a na r row zone is not always valid, however,  even when E/RT+>>I .  An important  
f ac to r  l imit ing the appl icabi l i ty  of (3.1) in a number  of cases  is the dependence f ( ~ )  of the reac t ion  r a t e  
on the depth of t r ans format ion .  The function f ( 7 )  can have different  "forms. F o r  example,  in heterogeneous 
condensed mix tu res ,  the components  of which in terac t  through a solid layer  of the product,  the dependence 
of the veloci ty  on the depth of t r ans fo rma t ion  is descr ibed  by laws of the type [15, 16] 

/ (~l) ---- (~l + ~l_)-Se-~% ~l < i (3.2) 

where  m and s a r e  kinet ic  p a r a m e t e r s ,  and 7 -  c h a r a c t e r i z e s  the initial  depth of t r ans fo rmat ion  (7- <<1). 

The dependence (1.4) re f lec t s  the slowing of the reac t ion  in a condensed mix tu re  in propor t ion  to the 
growth of the l ayer  of product  separa t ing  the react ing  components .  In the ca se  of s t rong slowing of the r e -  
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action [large m and s in (3.2)] the approximation of a nar row zone is incorrect  even for  high activation en- 
ergies  [7, 8]. 

F igure  2 shows integral curves  of Eq. (1.8) obtained through a numerica l  solution of the problem (1.8), 
(1.9) with strong (curve 1) and weak (curve 3) dependences of the veloci ty  on the depth of t ransformation.  
As seen f rom Fig. 2, curves  1 and 3 have an essent ial ly  different nature.  With a strong dependence of the 
velocity on the depth of t ransformat ion the integral  curves have an inflection, the zone of t ransformat ion is 
not narrow compared  with thewarm-upzone ,  andthere is a certain section on the integral  curves adjoining 
the straight line T=T_+Qr /c  -1 (here and la ter  the rat io Q/c  is taken as constant: r /+-1).  The behavior  of 
the integral curves at different values of the pa ramete r  u is i l lustrated by the dashed curves 1' and 1",* 
corresponding to the values u '  = 0.85 u 1 and u" = 1.1 ul, where u 1 is the value of the pa rame te r  u correspond-  
ing to curve 1. 

It is shown in [7, 8] that with strong slowing of the react ion the propagation velocity of the front is 
determined by the heat re lease  in a cer tain par t  of the react ion zone - the zone of propagation (zone II in 
Fig.2) ,  and the la ter  t ransformat ion of the substance in the burn-out  zone (zone HI) and the heat re lease  con- 
nec ted with it have ~lmost no effect on the combustion velocity. Let us examine the possibil i ty of const ruct -  
ing approximate equations for the velocity u which a re  connected with the proper t ies  of the field of d i rec -  
tions of the differential equation (1.8) for  several  hea t - re l ease  functions. 

In differential  fo rm the equation of isoclines has the form 

d~ q~ - -  ( r  - -  T _  - -  q ~ - l )  q~T' (3.3) 
dE = ( T - - T  -- Q~c:l) ~ ,  + Qq~c-' 

As seen f rom (3.3), the field os directions of the differential  equation (1.8) can have a singular point 
whose coordinates To, r/0 a re  determined by the equations 

( ~ T ' ) T o ,  v,o "~  - -  c Q  -1  (q)~ ')T. ,~o , r 0 = T q- Qc-hlo + ((p / r (3 .4) 

It iS interesting to note that the values To, r/0 a re  c lose to the values T . ,  r/, corresponding to the maxi-  
mum of go (r/, T) under conditions where the react ion proceeds  adiabatically and are  determined by the equa- 
tions 

(r : - -  cQ-i(cp~')r,.,~., T ,  .= T_ q- Qc-l~l. (3.5) 

The f i r s t  equations of (3.4) and (3.5) which determine the values r/0, TO and r/,, T .  coincide, while 
for a strong dependence of the velocity on the tempera ture  the second equations of (3.4) and (3.5) differ by 
the small  value (go-., exp ( - E / R T ) ,  go/goT' =RT0ZE-I<<T0) �9 

The closeness  of the values r/0, To and r/., T .  indicates that the p resence  of the singular point r)0, To 
in the region 0<r/ <1, T_< T< T+, just like the presence  of the point r/., T , ,  is connected with the strong 
dependence of the reaction rate on the depth of t ransformation.  

An analysis of the behavior of the integral  curves  obtained through the numerica l  solution of (1.8) with 
different types of function go (r/, T) shows that the s tar t  of the section of the integral curve adjoining the 
straight line T = T_ + Qc -177 and corresponding to the burn-out  zone lII cor responds  to the vicinity of the 
singular point P(r/0, To) of the field isoclines (in Fig. 2 the points Pl and 19 2 pertain to curves  1 and 2). This 
c i rcumstance  makes it possible to obtain an approximate expression for the propagation velocity of thefront  
in the presence  of a burn-out  zone. As seen f rom (1.8), it is easy to calculate u 2 if dr//dT is known at any 
of the points r/l, Ti of the integral curve r/ (T, u): 

u~ = 9(T~, ,,) ( d r )  (3.6) 
T I - - T  - Q c - # l l  ~ T,,~i 

Considering that in the vicinity of the point To, r/0 the integral curve r/(T,  u) approaches the straight 
line T = T_ + Qc -i  r/, we have 

) ~ (To, ~lo) Q 
~.,To ~ c ~ To - -  T_  - -  Qc-lTIo c 

Keeping in mind the second of Eqs. (3.4), the expression (3.7) can be represented in the fo rm 

uo ~ = r (To, 00) Q c-1 (0 In r / OT)ro,~ 

* As in Russian original,  curves  1' and 1" a re  not labeled in the f igure - Publisher.  

(3 .8)  
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It is interest ing to note that (3.8) can also be obtained by another means - the l inearization of the func- 
tion r  T) in the zone of propagation, if the point To, 70 is chosen as the point of the expansion. In [8] such 
a method was used to obtain the following approximate equation for  the propagation velocity of the front:  

u. 2 = r (T,,  ~l.) Qc -1 (0 In (p / Or)r . , ,~e  (3.9) 

The coordinates  T , ,  7 ,  of the point of the expansion of ~v (7, T) are  determined by Eqs. (3.5). With a 
strong dependence of the react ion rate  on the depth of t ransformat ion the values u 0 and u, pract ical ly  coin- 
cide. Fo r  example, for  kinetic functions corresponding to exponential (~pl~ e-mT) and power-law (ga2~7 -s ,  
s>>l) slowings of the react ion ra te  the respect ive  rat ios of velocit ies u 0 and u. are  

( u o / u , h = l ,  ( u o / u , h = e / ( i + s - 1 )  ~ i ,  s > > t  

A compar ison  of the approximate velocities with the resul ts  of numerical  calculations is presented 
in Table  1, where the rat ios of u 0 to u o determined through a numer ica l  solution of the problem (T_cQ -1 = 
0.01) are  given. Fo r  the hea t - r e l ease  functions under consideration 

tpl = koe-~,~e-E / RT, % = ko~l-se-E / RT, % = ko (i --  q)%-E/Rr 

the propagation velocit ies determined by (3.8), as well as by Eq. (3.9) which is equivalent to it, a re  some-  
what overstated.  

More  exact correspondence with the resul ts  of the numerical  calculation is obtained if it is assumed 
that the slope of the integral curve in the vicinity of the singular point (~0, To) of the field of directions cor -  
responds approximately to the slope of the isocline passing through this point. The closeness of the d i rec-  
tions of the integral  curve and the isocline is indicated by the small  vaiation in the slope of the integral  
curve in the burn-out  zone: 

(d~l / dr)~o, To -= P, P = (q~T - ~  V ((~T)'  - -  r162 ] (P~,~ (3.10) 

F o r  the kinetic functions cpl, go2, and r the express ion under the radical  in (3.10) is g rea te r  than zero,  
i.e., the point 70, To is a saddle point of the field of directions.  The values p+ and p_ determine the slope 
of the separa t r i ces  at this point. Substituting into (3.6) the values 

we have 

T1 = To, ~h =~lo; (dT/d~l),~o, T o = p + - I  

u2 = q~ (To, "q0) Q e-1 (o In q~ / 0T)T~ ~o~ (3.11)  

where ~ is a coefficient close to unity which is determined by the kinetic pa r ame te r s  of the function q:  

~ =  1 
1+ g ~  

t + s---~ -1 

n § V-n [1 "4- 2RToE-~ (n --  t) 1 

The velocit ies determined by the approximate expression (3.11) agree  well with the numerical  results  
(Table 1) if the dependence of the react ion rate  on the depth of t ransformat ion is strong enough. 

An analysis of the field of isoclines of the differential equation (1.8) in the region T_ �9 T �9 T+, 0 �9 7 �9 
7+ under considerat ion makes it possible to predict  f rom the fo rm of the function ~p (7, T) the nature of 
the integral curve s and thereby to prede termine  the means of calculating the combustion velocity. The 
absence of a singular point of the field of dire ctions in the reg ion  T_ �9 T �9 T+, 0 �9 ~ �9 1 points to a mono- 
tonic variat ion in the slope of the in tegra l  cu rves .  In this case the react ion zone is narrow (for a strong 
dependence  of the ve loc i ty  on the t empera ture )  and one can use (3.1) to calculate the combustion velocity. 
The presence  of a s ingular  point To, 7/0 of the field of d i rec t ions  in the region T _ � 9  T � 9  T+, 0< ~ �9 indi- 
cates a nonmonotonic var ia t ion in the slope of the integral  curve ~ (T, u). Fo r  values of T O differing con- 
s ide rab ly  f rom T+ the r eac t i on  zone is not narrow: the combustion velocity is de termined by Eqs. (3.8) 
and (3.11). 

As an i l lustration let us examine the kinetic dependence for a react ion of n-th order  

q) ---- ako(l - -  l])ne-F-'/RT (3.12) 
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F o r  this hea t - re l ease  function the coordinates of the singular point Pff0, ~0) of the field of directions 
a re  determined by the equations 

T O -~ T+ --  RTo~E -1 (n --  t), n0 = t --  nRro~c (EQ)-'  

When n < 1 the point To, T/0 does not belong to the region T_ ~ T �9 T+, O ( 7/ ,c 1, the variat ion in the slope 
of the integral curves has a monotonic nature (curve 3 in Fig. 2; n=0,  RT+/E=0.05) ,  and the velocit ies de- 
termined f rom the approximate equation (3.1) agree  well with those calcula ted numerically.  When n> 1 the 
point To, ~?0 falls in the region of variat ion in T and ~/ and the nature of the integral  curves changes: an in- 
flection appears on the curves,  and the tempera ture  interval  of the react ion zone increases  (curve 2, n= 2). 
For  values cons iderably g rea te r  than unity T O differs f rom T+ by many charac ter i s t ic  intervals RT02/E and 
clear ly expressed sections are  observed on the integral  curve corresponding to the zones of warm-up  (zoneD, 
propagation (zone II), and burn-out  (zone III) [7, 8] (curve 3; n= 5). In this case  the propagation velocity can 
be determined f rom Eq. (3.11). The correspondence of the velocities obtained using (3.11) and calculated 
numer ica l ly  is the better,  the l a rger  the valueofn.  We note that in contrast  to (3.8), Eq. (3.11) gives good 
resul ts  even for  small  n (n = 2). 

In conclusion, let us dwell on the tempera ture  coefficient of the propagation velocity which is an im-  
por tant  experimental  and theoret ical  charac te r i s t i c  of the combustion process  and charac te r i zes  the change 
in the propagation velocity of the front with a change in the combustion tempera ture  T+ = T_ + Qc -1. The coef- 
ficients k_ and k+ can be analyzed in accordance  with the two possible means of variat ion in the combustion 
tempera ture :  by a change in the initial t empera ture  T_ and in the calorif ic effect Q (through dilution of the 
sys tem of products,  for example) 

k ---- 0 1 n u / ~ T ,  k+ = O l n u / 0 ( Q / c )  (3.13) 

With a weak dependence of the react ion rate  on the depth of t ransformat ion the react ion zone is narrow, 
and the combustion velocity is pract ical ly  determined by the value T+; in this case the coefficients k_ and 
k+ coincide: 

k ~ . k + = E / 2 R T + 2  

We can use  (3.9) to determine the t empera tu re  coefficients in the case  of a strong dependence of the 
react ion rate  on the depth of t ransformat ion  (wide react ion zones). We have 

k+~.~ E / 2RT.T+, k _ . ~  E / 2 R T .  ~, T . ~  r§ (3.14) 

With strong slowing of the react ion the tempera ture  T .  is considerably less than the combustion tem-  
perature,  which cor responds  to a higher coefficient k_ compared with k+. It follows f rom Eqs. (3.14) that 
the experimental  determination of k -  and k+ can provide information on the kinetics of heat r e lease  in the 
sys tem studied. Equality of the coefficients k_ and k+ shows that the t ransformat ion  of the substance is 
accomplished in a na r row tempera tu re  interval near  the combustion tempera ture  T+. A value of k+ lower 
thar~ k -  indicates the strong slowing of the react ion with g rea t e r  depth of t ransformation,  and the ra t io  k _ /  
k+ ~ T+/T ,  permi ts  an est imate  of the tempera ture  T,  corresponding to the s ta r t  of the burn-out zone. 

The author is grateful  to B. I. Khaikin and K. G. Shkadinskii for  constant ass is tance  and attention to the 
work per formed and to T. M. Mar tem'yanova  for compiling the p rog ram for  the computer calculations. 
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