STATIONARY PROPAGATIONOF AN EXOTHERMIC-REACTION
FRONT IN A CONDENSED MEDIUM

A. P. Aldushin UDC 534.2

The problem of the propagation of an exothermic-reaction front in a condensed medium has
been examined in a number of reports [1-8], in which various statements of the problem have
been analyzed, the conditions of existence and uniqueness of a solution determined, and differ-
ent approximate methods of determining the propagation velocity of the front suggested. In
[1-6] the examination was conducted for a specific class of heat-release functions correspond-
ing to the kinetics of exothermic trangformation in homogeneous condensed systems. The
propagation of the reaction front in heterogeneous sytems (condensed mixtures) was studied
in [7, 8] for particular forms of the heat-release function corresponding to certain simplify-
ing assumptions concerning the structure of the heterogeneous medium. In connection with
the complexity of the structures of real condensed systems [9-11] and the diversity of the
kinetic laws of interaction, in the present report the available results on a broader class of
heat-release functions are generalized, and'the possible approximate methods of determining
the propagation velocity are analyzed.

1. Statement of Problem

The stationary propagation of an exothermic-reaction front in condensed systems which are homoge~
neous ina thermal respect is examined, i.e., it is assumed that the temperature distribution is one-dimen~
sional in the direction along the propagation of the front. Such a situation occurs not only for systems which
are homogeneous in a chemical respect (or are homogenized in thewarm-upzone), where the heat release
has a volumetric nature, but also for the case, important in a practical respect, of condensed mixtures which
interact heterogeneously. As shown in [12], condensed mixtures can be considered as homogeneous in a
thermal respect independently of the degree of dispersion of the particles, since the heat release in such
mixtures (determined by the intermixing of the components) takes place much more slowly than the process
of thermal relaxation in the particles. The chemical heterogeneity inherent to such systems is manifested
in the particular form of the kinetic function characterizing the heat release in an effectively homogeneous
medium. Below we will use the concept of the effective reaction rate which determines the rate of transfor-
mation of the components per unit volume of the homogeneous medium under consideration.

A stationary mode of propagation of a reaction front in a condensed medium assumes the presence of
a sample, infinite in both directions, at one end of which (x=—w) is given the initial state of the substance
(the temperature and composition), while the final state is determined by the thermodynamic conditions of
equilibrium. For a one-stage transformation A —B, where A and B are the set of initial substances and re-
action products, respectively, the propagation of the front is described by two differential equations: an
equation for the propagation of heat and an equation for the rate of heat release. In a coordinate system
moving along with the front with a velocity u these equations have the form

N
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The equation of heat conduction (1.1) is written in the form of the
|7 conservation of the total enthalpy flux. In (1.1) and (L.2) 5= (p_1—pl)/
p_1 is the depth of transformation (0< 7 < n+), W is the reaction rate, x
is the coordinate along the direction of propagation, pl is the amount of
the i-th component per unit volume of the medium, p! is the amount of
one of the initial components, H;j(T) is the enthalpy of a unit mass of the
i-th component at the temperature T, c;(T) is the specific heat capacity
. of the i-th component, N is the number of components, the indices minus
ABTIP 6479 I3 and plus correspond to the conditions at the "cold” K=—w) and "hot"
- (Xx=w) ends, respectively. The thermal conductivity coefficient A, gen-

ig. 1
Fig erally speaking, can vary along with the temperature and composition
of the medium: A=2A(n, T).
7
7 With allowance for the stoichiometric relationships between the
’(ﬁ 1 reacting components the values p! can be expressed through the depth
1=t | ! of conversion:
a5 t t . . .,
! / ! dpi / dp' = wv;, plvm =9t —pi, i=1,2,..,N 1.3)
- I !
- 7 W N/ where p; are the stoichiometric coefficients of the reaction.
| | (]
4 =7 T3 Y, The integration of (1.1) in the limits from —e to x gives
N
Fig. 2 MT Jdz =up[c(T)(T —T)—Q(D)nl, p=Dp (.4)
[
1 N T
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1
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Here c(T) is the mean heat capacity of the medium, and Q(T) is the calorific effect of the reaction per
unit mass of the substance.

For a strongly exothermic reaction the last term in (1.6), as a rule, has the nature ofa correction
and reflects the dependence of the calorific effect on the temperature, connected with the difference in heat
capacities of the initial substances and the reaction products (the Kirchhoff effect). The temperature T}
after the completion of the reaction is determined from (1.4):

z=00,dl/dz =0, n=m,T, =T 4 Q(Tn,/eT,) €.7)

The dependence Q(’l‘)c'1 (T) is henceforth assumed to be such that in accordancewith the physical mean-
ing the combustion temperature is a monotonically increasing continuous function of the final depth of trans-
formation 7.

Equations (1.2) and (1.4) together with the boundary conditions at x=x« completely determine the prop-
agation of an exothermic-reaction front in a condensed medium. For further consideration it is convenient
to represent the problem on the propagation of the front in the form

d’l’] _ ‘P('ﬂ, T) . Aw
9T T AT T —Q@Mei@n ! o, T) = 1.9
n=07 T:T_;n=n+1 T=T+ (1-9)

In general, Eq. (1.8) does not have an analytical solution and therefore it is often necessary to resort
to a numerical calculation to solve the problem (1.8), (1.9). Here the question of the existence and unique-
ness of a solution acquires fundamental significance.

2. Existence and Uniqueness of Stationary Mode of Propagation

of an Exothermic-Reaction Front in a Condensed Medium

The question of the existence and uniqueness of a stationary mode of propagation of an exothermic-
reaction front in the condensed phase was examined in [1, 2, 5] on the assumption that the reaction rate can
be represented in the form
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wm, T) =1 — )k (T) 2.1)

The theorem of the existence and uniqueness of a solution was proven in [1, 2] for the cases n=0, 1
and in [5] for an arbitrary value of n. Equation (2.1) corresponds to the kinetics of an exothermic transfor-
mation in homogeneous condensed systems. The proof of the existence and uniqueness of the stationary prop-
agation of a reaction front was conducted in [8] for heterogeneous systems when the heat-release function
is not reduced to zero at the moment of completion of the reaction

wn, 1) >0, 0<n<nswn, 1) =0, 9>, 2.2)

which corresponds to certain simplifying assumptions concerning the structure of the heterogeneous sys-
tem. In many cases a more complex kinetics, not corresponding to (2.1) and (2.2), occurs for reactions in
the condensed phase. In connection with this let us examine the question of existence and uniqueness for
more general assumptions concerning the chemical reaction rate.

We will assume that the function ¢ (n, T) in (1.8) is bounded above and is positive everywhere except
for some interval in the vicinity of the initial temperature, where it is identically reduced to zero:

o=0T. <T<In=0 ‘ 2.3)
M>e>0 T°<T<T+,0<TI<TI+,(P("I+1T+)=Q (2.4)

where T° is the temperature at the start of the reaction (T_ < T°< T;). As is known [13], the condition (2.3)
is necessary for the existence of a stationary mode of propagation of an exothexmic-reaction front. In addi-
tion to (2.3) and(2.4), we will assume that the properties of the function ¢ (5, T) are such that the differential
equation (1.8) has a unique solution at all internal points of the region 0<y <y4, T_< T< Ty.

An important fact for the analysis is that the function ¢ (5, T) is reduced to zero at the moment of com-
pletion of the reaction (n=74, T=T,). In this case, as seen from (1.7) and (1.8), the point 4, T4 is a singu-
lar point of the differential equation, with the type of singularity and the behavior of the integral curves in
the vicinity of this point being determined by the properties of the function ¢(y, T). We can show that if
¢ (n, T) has the properties (2.3), (2.4),then one can always find a value of the parameter u at which the inte-
gral curve (1.8) satisfies the boundary conditions (1.9).

The existence of a stationary mode of propagation of an exothermic-reaction front in the condensed
phase will be proven on this basis. It should be noted that in the case under consideration one cannot use
the method of proof of existence and uniqueness used in [1-3, 5] in which the form of the function ¢ n, T)
was assumed to be known, which permitted a direct determination of the nature of the singular point N+
T+) and the behavior of the integral curves in its vicinity.

In the case of an arbitrary function ¢ (n, T) the principal aspect of the proof is the question of the ex-
istence of integral curves passing through the point (n o T4)-

Let us consider an increasing sequence of values n_,_i and the values 'I:Fi corresponding to them [from
1.7l
n+'l < .r]+'l+1 < TI+7 Te < T+i < T+i+1 < T+

An analysis of (1.8) shows [8] that there is a unique value of the parameter ul at whichthe integral curve
emerging from the point G passes through the chosen point B(y +1, T 1) (Fig. 1), with the value of the param-
eter ul increasing together with n,

it : i+ .
T|+1 1 > n+1, uitl > ui

Values of u> u; =vM 75 where b is the slope of some straight line PQ intersecting a segment AG and
lying below the line AD and M, is the greatest value of the function ¢/[T~T-—Qgnc™!] on the segment PQ, do
not belong to the sequence ul, since dn/dT < by holds for these values of the parameter u, i.e., the integral
curves pass below the stralght line PQ. Consequently, with the approach of TI+1 to g, the mcreasmg se-
quence of 5 +1 corresponds to an increasing sequence of values ul bounded above and havmg the limit

u” = lim u?, 1t —n,

It is not hard to show the existence of a limit for the decreasing sequence {uJ} corresponding to the
integral curve AE,, passingthrough the point E, (n+J T,) of the segment DE (any of the ul can be taken as
the value of u bounding the decreasing sequence { ui} from below):

wt =lmw, o->n, WT>v
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TABLE 1 Because of the monotonic dependence of the solution of (1.8) on
the parameter we have

RTL/E| m s n Upfu® | ugp/ue wi < < ut < u], ui+1 > ui, uJ'H. < u.’i

0.05 | 20 | — | — |1.2611.08 The integral curves 5 (T, u”) and 7 (T, ut) cannot intersect
010 | 10 | — | — [1.4 |1.16 either the curve AD or the segment DE (intersection with AD corre-
8:1(5) [;g I 11;* }'81 sponds to the value u! and intersection with DE corresponds to u),
8'(1)(5) - %g — i.g; (1) 184 consequently, they pass through the point D, i.e., they are the solu-
o0l — [ 20| Z 1104l007 tions of the problem (1.8), (1.9). When the values u~ and u* coincide
8'12 - 12 - %gf ?-33 the point D has a singularity of the saddle type. In this case there is
005 — | — | 5 [1:53]110 a unique curve corresponding to the value usu~=u' passing through
St e e A RS A the points A and D. In the general case [the form of ¢ (3, T) is arbi-
8.(1)8 = | = g %.3 izgg trary] the inequality u” <u* is satisfied between u~ and u*. It can be
015 — | — | 2 |3 1,04 shown that if u™ and u™ are such that u™ <u™, then for any interval of

values u” < u<u* the integral curve emerging from the point A passes
through the point D, i.e., is also a solution of the problem (L.8), (1.9).

In the latter case from the set of values u~ < u < u" corresponding to the solution of the problem (1.8),

(1.9) one must select as the velocity of stationary propagation of the front the value u=u" which is the limit
of the u! corresponding to solutions of the problem (1.8), (1.9) when 7 _,_i <, (T+i< T.), since it is clear
from physical considerations that the stationary propagation velocity of the reaction front must vary continu-
ously with a decrease in the parameter 7 +- We note here that the mode of stationary propagation of the re-
action front is an asymptotic representation (as t—«) of the real nonstationary propagation.

In a number of cases, for example, when¢ (n, T) = 1—y)*%k(T), n=1, the values =n4 and T=T_ are
not reached in any finite time t, i.e., the actual propagation of the reaction front takes place with <y + and
T<T,.

+

3. Approximate Determination of Velocity of Stat.ionary

Propagation of a Combustion Front

The specific properties of the function ¢ (y, T) are usually used in the construction of approximate
solutions. One oftheseproperties is the strong temperature dependence

o, D) =AM, Nwn, I)/c(Dp = am, T)kef (e AT

Here a=A /cp is coefficient of thermal diffusivity of the medium, k; is the preexponent, E is the acti-
vation energy, R is the universal constant, and the function f (n) characterizes the dependence of the reac-
tion rate on the depth of transformation.

At high activation energies (E/RT>>1) the reaction rate falls off rapidly withtemperature, which makes
it possible to use the approximation of a narrow reaction zone [14] in the calculation of the combustion ve-
locity.

By considering (1.8) in a narrow temperature interval of the reaction zone, where one can neglect all
the temperature dependences which are weakly exponential, one can obtain for the square of the velocity

u? = kokoe B I RTsq (,, T ) (RT 2c(T,) ] Q(T))) 3.1)

.
C (I—Me(n, T T
b= [\ ey )
The approximation of a narrow zone is not always valid, however, even when E/RT>1. An important

factor limiting the applicability of (3.1) in a number of cases is the dependence f(n) of the reaction rate
on the depth of transformation. The function f(n) can have different forms. For example, in heterogeneous
condensed mixtures, the components of which interact through a solid layer of the product, the dependence
of the velocity on the depth of transformation is described by laws of the type [15, 16]

fm)=0+mn)te™, n<i 3.2)
where m and s are kinetic parameters, and y_ characterizes the initial depth of transformation (y_<1).

The dependence (1.4) reflects the slowing of the reaction in a condensed mixture in proportion to the
growth of the layer of product separating the reacting components. In the case of strong slowing of the re-
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action [large m and s in (3.2)] the approximation of a narrow zone is incorrect even for high activation en-
ergies [7, 8].

Figure 2 shows integral curves of Eq. (1.8) obtained through a numerical solution of the problem (1.8),
(1.9) with strong (curve 1) and weak (curve 3) dependences of the velocity on the depth of transformation.
As seen from Fig. 2, curves 1 and 3 have an essentially different nature. With a strong dependence of the
velocity on the depth of transformation the integral curves have an inflection, the zone of transformation is
not narrow compared with thewarm-up zone, andthere is a certain section on the integral curves adjoining
the straight line T=T_+Qnc~! (here and later the ratio Q/c is taken as constant: 1n+=1). The behavior of
the integral curves at different values of the parameter u is illustrated by the dashed curves 1t and 1",*
corresponding to the values u'=0.85 uy and u"=1.1 u, where u; is the value of the parameter u correspond-
ing to curve 1.

It is shown in [7, 8] that with strong slowing of the reaction the propagation velocity of the front is
determined by the heat release in a certain part of the reaction zone — the zone of propagation (zone II in
Fig.2), and the later transformation of the substance in the burn-out zone (zone III) and the heat release con-
nected with it have almost no effect on the combustion velocity. Let us examine the possibility of construct-
ing approximate equations for the velocity u which are connected with the properties of the field of direc~
tions of the differential equation (1.8) for several heat-release functions.

In differential form the equation of isoclines has the form

dn (T —Qn)op (3.3)
=TT = Qe d 9, F Qe

As seen from (3.3), the field of directiohs of the differential equation (1.8) can have a singular point
whose coordinates T, n, are determined by the equations

@)1 00 =~ Q7 (i) To = T+ Qe™g + (@ / 91)7,n0 @.4)

It is interesting to note that the values Ty, n, are close to the values T,, 5, corresponding to the maxi-
mum of ¢ (7, T) under conditions where the reaction proceeds adiabatically and are determined by the equa-~
tions

(@) T0n, = — Q7 HPs )T, 100 T:!: = T_ 4 Qc'n, 3.5)

The first equations of (3 4) and (3.5) which determine the values n,, T, and N4> T, coincide, while
for a strong dependence of the velocity on the temperature the second equations of (3.4) and (3.5) differ by
the small value (¢~ exp (—E/RT), ¢/ @1 =RTPE 1« T,).

The closeness of the values 5y, Ty and 7., T, indicates that the presence of the singular point y,, T,
in the region 0<y <1, T_< T< Ty, just like the presence of the point 5 «» Ty, is connected with the strong
dependence of the reaction rate on the depth of transformation.

An analysis of the behavior of the integral curves obtained through the numerical solution of (1.8) with
different types of function ¢ (, T) shows that the start of the section of the integral curve adjoining the
straight line T=T_+Qc !5 and corresponding to the burn-out zone III corresponds to the vicinity of the
singular point P(no, Ty) of the field isoclines (in Fig. 2 the points P, and P, pertain to curves 1 and 2). This
circumstance makes it possible to obtain an approximate expression for the propagation velocity of the front
in the presence of a burn-out zone. As seen from (1.8), it is easy to calculate u? if dyn/dT is known at any
of the points 5, Ty of the integral curve 5 (T, w:

— @ (Th, m) ar
ut = Ty —T_ — Q¢ (Tn—)T,,n; (3.8)

Considering that in the vicinity of the point T, n, the integral curve n (T, u) approaches the straight
line T =T_-+Qc 1y, we have

4T ~9 2 @ (To, Mo) Q -
(dﬂ )n,,n“’T" WS =T_— Q0 ¢ (3.7

Keeping in mind the second of Egs. (3.4), the expression (3.7) can be represented in the form

2 = @ (T, M) Q= (0 In ¢ / T)r, ., 3.8

* As in Russian original, curves 1' and 1" are not labeled in the figure — Publisher.
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It is interesting to note that (3.8) can also be obtained by another means — the linearization of the func-
tion ¢ (n, T) in the zone of propagation, if the point Ty, 7, is chosen as the point of the expansion. In [8] such
a method was used to obtain the following approximate equation for the propagation velocity of the front:

ut = 9 (T4, M) Qe O In g/ 0T); e .9)

The coordinates T,, n, of the point of the expansion of ¢ (y, T) are determined by Eqs. (3.5). With a
strong dependence of the reaction rate on the depth of transformation the values u, and u, practically coin-
cide. For example, for kinetic functions corresponding to exponential (¢;~ e ™) and power-law (@,~n~5,
s>1) slowings of the reaction rate the respective ratios of velocities u, and u, are

@/ wdy =1, (mo/m)y=e/(+sP =1, s>1

A comparison of the approximate velocities with the results of numerical calculations is presented
in Table 1, where the ratios of u, to u° determined through a numezrical solution of the problem (T.cQ~! =
0.01) are given. For the heat-release functions under consideration

@y = kge~mne~E | BT, @y = kogn=se~F /RT, 3 = Ko (1 — )" E/ET

the propagation velocities determined by (3.8), as well as by Eq. (3.9) which is equivalent to it, are some~
what overstated.

More exact correspondence with the results of the numerical calculation is obtained if it is assumed
that the slope of the integral curve in the vicinity of the singular point (n,, T,) of the field of directions cor-
responds approximately to the slope of the isocline passing through this point. The closeness of the direc-
tions of the integral curve and the isocline is indicated by the small vaiation in the slope of the integral
curve in the burn-out zone:

@n/dl), 7, =p, p=@rE) @) — 0p®.)] ¥, (8.10)

For the kinetic functions ¢4, ¢, and @3 the expression under the radical in (3.10) is greater than zero,
i.e., the point 7y, T, is a saddle point of the field of directions. The values p; and p. determine the slope
of the separatrices at this point. Substituting into (3.6) the values

I, =71, M1 = Nos (dT/le)m., 1, = p,?
we have
ut = @ (Ty, Mo) Q¢ (0 1n ¢ / 8T)7,, 4 (3.11)

where ¢ is a coefficient close to unity which is determined by the kinetic parameters of the function ¢:

_ i
S = 1+ VIET.[E
1 1 Fs172
L=+ Y ] r<E/Rs
£, = n—1 -
Ps T

n+ Vr[TF2RTE™T (n— 1))

The velocities determined by the approximate expression (3.11) agree well with the numerical results
(Table 1) if the dependence of the reaction rate on the depth of transformation is strong enough.

An analysis of the field of isoclines of the differential equation (1.8) in the region T_< T< T, 0<n <
n+ under consideration makes it possible to predict from the form of the function ¢ (n, T) the nature of
the integral curves and thereby to predetermine the means of calculating the combustion velocity. The
absence of a singular point of the field of directions in the region T.< T < T+, 0< 5 <1 points to a mono-
tonic variation in the slope of the integral curves. In this case the reaction zone is narrow (for a strong
dependence of the velocity on the temperature) and one can use @3.1) to calculate the combustion velocity.
The presence of a singular point Ty, 5, of the field of directions in the region T_<T< T,, 0<y <y, indi-
cates a nonmonotonic variation in the slope of the integral curve 5 (T, u). For values of T, differing con-
siderably from T, the reaction zone is not narrow: the combustion velocity is determined by Eqs. (3.8)
and (3.11).

As an illustration let us examine the kinetic dependence for a reaction of n-th order

¢ = aky(l — m) e E/ET (3.12)
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For this heat-release function the coordinates of the singular point P(T, 7, of the field of directions
are determined by the equations

To=T, — RTZE- (n — 1), n,=1— nRTZ (EQ)™

When n<1 the point Ty, n, does not belong to the region T. < T < T, 0<p <1, the variation in the slope
of the integral curves has a monotonic nature (curve 3 in Fig. 2; n=0, RT+/E=0.05), and the velocities de-
termined from the approximate equation (3.1) agree well with those calculated numerically. When n>1 the
point T, 7, falls in the region of variation in T and n and the nature of the integral curves changes: an in-
flection appears on the curves, and the temperature interval of the reaction zone increases (curve 2, n=2).
For values considerably greater than unity T, differs from T, by many characteristic intervals RT2/E and
clearly expressed sections are observed on the integral curve corresponding to the zones of warm-up (zonel),
propagation (zone II), and burn-out (zone III) {7, 8] (curve 3; n=5). In this case the propagation velocity can
be determined from Eq. (3.11). The correspondence of the velocities obtained using (3.11) and calculated
nume rically is the better, the larger the value ofn. We note that in contrast to (3.8), Eq. (3.11) gives good
results even for small n (n=2).

In conclusion, let us dwell on the temperature coefficient of the propagation velocity which is an im-~
portant experimental and theoretical characteristic of the combustion process and characterizes the change
in the propagation velocity of the front with a change in the combustion temperature T, =T-+Qc 1. The coef-
ficients k_ and k; can be analyzed in accordance with the two possible means of variation in the combustion
temperature: by a change in the initial temperature T_ and in the calorific effect Q (through dilution of the
system of products, for example)

k.=0lnu/dT., k, —0lnu/3(Q/c) (3.13)

With a weak dependence of the reaction rate on the depth of transformation the reaction zone isnarrow,
and the combustion velocity is practically determined by the value T+; in this case the coefficients k_ and
k + coincide:

k_~k, —=E/2RT?

We can use (3.9) to determine the temperature coefficients in the case of a strong dependence of the
reaction rate on the depth of transformation (wide reaction zones). We have

k,~E/2RT,T,, k.~E/2RT?, T.<T, (3.14)

With strong slowing of the reaction the temperature T, is considerably less than the combustion tem-
perature, which corresponds to a higher coefficient k_ compared with k. It follows from Egs. (3.14) that
the experimental determination of k- and k+ can provide information on the kinetics of heat release in the
system studied. Equality of the coefficients k- and k+ shows that the transformation of the substance is
accomplished in a narrow temperature interval near the combustion temperature T,. A value of k4 lower
than k - indicates the strong slowing of the reaction with greater depth of transformation, and the ratiok -/
k. =#T4/T » permits an estimate of the temperature T, corresponding to the start of the burn-out zone.

The author is grateful to B. I. Khaikin and K. G. Shkadinskii for constant assistance and attention to the
work performed and to T. M. Martem'yanova for compiling the program for the computer calculations.
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